Equations

Kinematics

\bar{v} = \cfrac{\Delta x}{\Delta t}

\Delta v = v - v_0

\bar{v} = \cfrac{v + v_0}{2}

\Delta x = (\cfrac{v + v_0}{2}) \Delta t

a = \cfrac{\Delta v}{\Delta t}

v = v_0 + at

\Delta x = {v_0}t + \cfrac{1}{2}at^2

v^2 = {v_0}^2 + 2a\Delta x

g = \SI{10}{m \per s^2}

Force

a = \cfrac{F_{net}}{m}

W = F_g = mg

F_F = \mu F_N

Energy

W = Fd

P = \cfrac{W}{\Delta t} = \cfrac{Fd}{\Delta t} = Fv

E_k = \cfrac{1}{2}mv^2

E_g = mgh

E_s = \cfrac{1}{2}kx^2

Efficiency = \cfrac{P_{out}}{P_{in}} = \cfrac{W_{out}}{W_{in}}

g = \SI{10}{m \per s^2}

Momentum

p = mv

{m_1}{v_1} + {m_2}{v_2} = {m_1}{v_1}^\prime + {m_2}{v_2}^\prime

{m_1}{v_1} + {m_2}{v_2} = (m_1 + m_2){v}^\prime

J = \Delta p = m \Delta v = F \Delta t

Gravitation & Circular Motion

F_g = \cfrac{G m_1 m_2}{r^2}

g = \cfrac{G m}{r^2}

F_g = mg

G = 6.67 \times 10^{-11} \: \si{N m^2}/\si{kg^2}

a_c = \cfrac{v^2}{r}

v = C \omega = 2\pi r \omega = \cfrac{C}{T}

\omega = 1 / T

C = 2 \pi r

v = \sqrt{\cfrac{Gm}{r}}

(ω must be in rev/s)

Simple Harmonic Motion

T = \cfrac{1}{f}

T_p = 2 \pi \sqrt{\cfrac{\ell}{g}}

T_s = 2 \pi \sqrt{\cfrac{m}{k}}

F_s = -kx

E_s = \cfrac{1}{2}kx^2

Torque & Angular Motion

\theta = \cfrac{x}{r}

\omega = \cfrac{v}{r}

\alpha = \cfrac{a}{r}

\omega = \cfrac{\Delta\theta}{\Delta t}

\alpha = \cfrac{\Delta\omega}{\Delta t}

\theta = \theta_0 + \omega_0 t + \cfrac{1}{2}\alpha t^2

\omega = \omega_0 + \alpha t

\omega^2 = \omega_0^2 + 2\alpha\Delta\theta

\tau = Fr

\tau_{net} = I\alpha

L = I\omega

\Delta L = \tau \Delta t

K = \cfrac{1}{2}I \omega^2

Moment of Inertia Equations

Point Mass: I = MR^2

Solid Sphere: I = \cfrac{2}{5}MR^2

Hollow Sphere: I = \cfrac{2}{3}MR^2

Solid Cylinder: I = \cfrac{1}{2}MR^2 (symmetry axis)

Thin Hoop: I = MR^2 (symmetry axis)

Rotational Motion Symbols

I = rotational \ inertia

K = kinetic \ energy

L = angular \ momentum

\alpha = angular \ acceleration

\theta = angle

\tau = torque

\omega = angular \ speed

Electrical Forces and Fields

F_E = \cfrac{k \lvert q_1 q_2 \rvert}{r^2}

E = \cfrac{k \lvert Q \rvert }{r^2}

F_E = qE

U_E = \cfrac{kqQ}{r}

V = \cfrac{kq}{r}

\Delta U_E = q \Delta V

E = \cfrac{\Delta V}{\Delta r}

k = 9.0 \times 10^9 \: \si{N m^2}/\si{C^2} = \cfrac{1}{4 \pi \epsilon_0}

e = 1.60 \times 10^{-19} \: \si{C}

m_{electron} = 9.11 \times 10^{-31} \: \si{kg}

m_{proton} = 1.67 \times 10^{-27} \: \si{kg}

Electricity & Magnetism

F_M = qvB \sin{\Theta}

F_M = I \ell \sin{\Theta}B

\Phi_B = B \cdot A

\epsilon = emf = \Delta V

\epsilon = \minus\cfrac{\Delta \Phi}{\Delta t}

\epsilon = B \ell v

B = \cfrac{\mu_0}{2 \pi}\cfrac{I}{r}

\mu_0 = 4 \pi \times 10^{-7}

DC Circuits

I = \cfrac{V}{R}

\Delta V = IR

P = I \Delta V = I^2 R = \cfrac{\Delta V^2}{R}

R_{eq} = R_1 + R_2 + R_3 + ...

\cfrac{1}{R_{eq}} = \cfrac{1}{R_1} + \cfrac{1}{R_2} + \cfrac{1}{R_3} + ...

I = \cfrac{\Delta Q}{\Delta t}

\Delta V = \cfrac{Q}{C}

R = \cfrac{\rho \ell}{A}

C = \kappa \epsilon_0 \cfrac{A}{d}

R_s = \sum\limits_i R_i

\cfrac{1}{R_p} = \sum\limits_i \cfrac{1}{R_i}

C_p = \sum\limits_i C_i

\cfrac{1}{C_s} = \sum\limits_i \cfrac{1}{C_i}

E = \cfrac{Q}{\epsilon_0 A}

U_C = \cfrac{1}{2}Q \Delta V = \cfrac{1}{2} C (\Delta V)^2

Mechanical Waves and Sound

v = \lambda f

Waves on a string:
v = \sqrt{\cfrac{F_T}{\mu}}

\mu = linear \: density \: (kg/m)

\mu = mass / length

Light and Geometric Optics

c = 2.998 x 108 m/s

v = \lambda f

n = \cfrac{c}{v}

n_1 \sin\theta_1 = n_2 \sin\theta_2

d \sin\theta = m \lambda = \Delta \ell = 2t

\cfrac{1}{f} = \cfrac{1}{d_i} + \cfrac{1}{d_o}

\lvert M\rvert = \lvert\cfrac{d_i}{d_o}\rvert = \lvert\cfrac{h_i}{h_o}\rvert

Fluid Mechanics

\rho = \cfrac{m}{V}

P = \cfrac{F}{A}

P = P_0 + \rho gh

F_b = \rho V g

A_1 v_1 = A_2 v_2

P_1 + \rho g y_1 + \cfrac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \cfrac{1}{2} \rho v_2^2

P_0 = 101325 \, \si{Pa}

1 \, \si{atm} = 101325 \, \si{Pa}

Thermodynamics

\Delta U = Q + W

W = -P \Delta V

PV = nRT

\cfrac{P_1 V_1}{T_1} = \cfrac{P_2 V_2}{T_2}

\cfrac{Q}{\Delta t} = \cfrac{kA \Delta T}{L}

KE = \cfrac{3}{2}k_B T

U = \cfrac{3}{2}nRT

R = 8.314 \, \cfrac{\si{\pascal \meter \cubed}}{\si{\mole \kelvin}}

k_B = \num{1.38 e-23} \, \cfrac{\si{\joule}}{\si{\kelvin}}

Modern Physics

c = \num{3.00 e8} \, \si{m/s}

h = \num{6.63 e-34} \, \si{J}\dot\si{s}

hc = 1240 \, \si{eV} \dot \si{nm}

e = \num{1.60 e-19} \, \si{C}

1 \, \si{u} = \num{1.66 e-27} \, \si{kg}

1 \, \si{u} = 931 \, \cfrac{MeV}{c^2}

c = \lambda f

E = hf

E = mc^2

\lambda = \cfrac{h}{p}

K_{max} = hf - \phi

Trigonometry

sin\theta = \cfrac{opposite}{hypotenuse}

cos\theta = \cfrac{adjacent}{hypotenuse}

tan\theta = \cfrac{opposite}{adjacent}

a^2 + b^2 = c^2