Equations for Robot Winch Power Assignment

Gear Ratio

$GR = \tau_{out} / \tau_{in} = N_{out} / N_{in} = \omega_{in} / \omega_{out}$		where: τ = torque, N = # of teeth, ω = angular velocity ("speed") Note: Motor is input and gearbox is output
Force / Work / Energy / Power		
τ = F·r		where: F = force, r = radius
W = Fd P = W/t	(mech. power)	where: W = work, F = force, d = distance where: W = work, t = time Note: you don't have d or t in this project, so use the next equation instead. It is a completely equivalent equation – for a free thrill, see if you can prove it.
Ρ = τ· ω	(mech. power)	where: P = power, τ = torque, ω = angular velocity ("speed") Note: to get P in <u>Watts</u> , put ω in radians/sec, and put τ in Nm Note: 1 revolution = 2π radians
Motor Equations: requires motor specification data		
% Torque = % $\tau = \tau / \tau_s$		where: % Torque = percent of max torque being used, T = actual torque, T _s = stall torque of the motor
$ω$ = (1 - %τ) $ω_{f}$		where: % τ = %max Torque, ω = speed, ω_f = free speed of motor
$I = I_f + (I_s - I_f) \%\tau$		where: I = actual current, I_s = stall current of motor, I _f = free current of motor, $\%\tau$ = % of max torque
Electrical Power / Efficiency		
V = IR P = IV	(elec. power)	where: V = voltage, I = current, R = resistance where: P = elec. power, I = current, V = voltage
$Eff = P_{out} / P_{in}$		where: Eff = power efficiency of system, P _{out} = output power, P _{in} = input power

Note: figure out which is input power and which is output power: mech vs elec